
An Analysis of Network Securities in Mobile
Applications

Brandon Wang

Abstract—Many people fall victim to online fraud and identity
theft because Man in the Middle (MITM) attackers can intercept
data transferred between a client and a server. The main objective
of this research project is to develop a universal and robust
method of analyzing the network security of mobile applications.
This method, the Middle Man Defender (MMD), will defend
against the MITM attackers.

The MMD mimics a MITM attacker. It accesses the users
data sent across a network. Then, the MMD will analyze the
data to assess an applications security. Unlike a real malicious
MITM attacker, the MMD will alert the user about the insecure
application.

Multiple applications have been tested with this method. Some
applications do connect to the MMD and allow itto catch the
sensitive data. The most insecure applications send sensitive data
in plain text without any protection. Some other applications
send sensitive data in anencrypted form. Only the most secure
applications request for the servers certificate and will only
connect if the certificate is authentic. Therefore, if connected
to the MMD, those applications will refuse to transmit any data
at all.

Based on the results, most popular English apps and most
banking apps do verify certificates and, hence, successfully ensure
the network connection is secure. However, many other apps,
including most popular Chinese shopping apps, do not ensure
the connections security and expose sensitive data.

The product of this research introduces a dynamic method of
detecting insecure applications.

I. INTRODUCTION

Background
Online mobile app stores often allow many developers to

upload apps without thoroughly checking if the app protects
its clients from network attackers. In addition, it is very
convenient for phone users to download these potentially
harmful and insecure apps because these mobile app stores
provide a multitude of free apps. Of Google Plays 1.6 million
apps, about 80% of them are free. Also, all of Baidus App
Stores apps are free. As a result, hasty and inexperienced
mobile users may fall victim to app developers or attackers.

Most of the insecurities that make the client vulnerable to
the app developers or attackers usually have security flaws in
the app source code. The app can perform the malicious ac-
tions in the background such as sending sensitive information
over a network without user approval or encryption, allowing
app developers to take advantage of the users. Also, the root
causes of these problems can be hard to fix. Developers
may have obfuscated the code, rendering the source code
unreadable. They could also encrypt the entire code except
for the decryption key, which only the app can use. So, even
after decompiling the code, the insecurity is incurable. Some

insecurities include not verifying certificates or not encrypting
information over a network. Since online transactions occur
after an application verifies the certificate of the server it
is communicating with, if attackers perform the man in the
middle attack, they can gain access to the clients personal
information such as phone numbers, account name and pass-
words. Secure apps do verify certificates and thus they will
fail the verification of the attackers certificate and will prevent
any transactions.

To identify these insecurities, analyzers can mimic a ma-
licious attacker, catch the network traffic and search for any
sensitive information. And to prevent any potential attacks,
clients can stop using the app or connect to a secure network.

This research is scientifically important because it designs
a universally dynamic way of detecting insecure mobile appli-
cations. This dynamic method can be used to identify insecure
connections on different devices such as iPhones or computers.
With this new method, mobile users will not only become
aware of network insecurity within apps, but also be protected
from those attackers. 5 Also, during this technological era,
many attackers can and have easily taken advantage of many
unwary clients. This research can further extend the security
measures against these attacks.

Pertinent Literature
The Public Key Infrastructure (PKI), and certificates both

safeguard and authenticate data passed over a network. The
PKI requires two keys - the public and private key of a website
or application. The public key is distributed while the private
key is held secret. The public key can only encrypt messages
and the private key can only decrypt the messages that the
corresponding public key encrypted. As a result, anyone can
send a message to a website knowing that no one except the
intended website can decrypt the message. Certificates are used
to distribute the public keys and to let the client know they
are dealing with the correct website. Certificates are given to
websites or applications by a Certificate Authority (CA). If
a CA is trusted, then a certificate distributed by the CA and
the certificate owner is also trusted. Some clients check the
authenticity of a certificate; if the check fails, they disconnect.
Other clients, such as the applications being analyzed in this
research, are not secure, do not check the authenticity of a
certificate, and therefore, allowing attackers to pretend to be
a targeted website. Then, the client uses the websites public
key to encrypt a random symmetric key that the website will
decrypt with their private key. Symmetric keys can encrypt
and decrypt information. Hence, using this symmetric key, the



Fig. 1. Flowchart of a Man in the Middle Attack

client and the website can continue their transaction.
In the Man in the Middle attack, the attacker gets between

the client and the server of the website or application. To get
between the two parties, the attacker must act as the server
to the client, and as the client to the server. The attacker
can then sniff out the data from the transactions between the
client and server. As usual, the client will request a certificate
from the web server and the attacker will emulate. However,
the certificate the client receives will not be authentic. If
the client is secure, it will prevent any further transactions.
Otherwise, it will continue. Then the client will send an
encrypted symmetric key to the attacker whom will forward
it to the server. All future transactions between the client and
the server will be intercepted and forwarded by the attacker.
A passive attacker only eavesdrops on the information while
an active attacker will alter the data maliciously.

Certificates secure the connection between the client and
the server and also prevent Man in the Middle Attacks. When
the client requests for a certificate, the attacker will forward
that request to the server. However, when the server responds
with its certificate, the attacker must replace that certificate
with his own and include his own public key. He must supply
the client with his public key if the attacker wishes to see the
data transmitted by the client. If the attacker simply forwarded
the certificate, the client will use the servers public key. As
a result, the attacker cannot read the data because he does
not have the servers private key. When the client receives
the attackers certificate, he will fail to verify it because the
certificate is not signed by a trusted CA. If the attacker does
have a certificate signed by a CA, the client will see that the
certificate does not correspond to the server.

Flask is a micro-framework for Python Web development
and will be used to create the Man in the Middle attacker. This
Flask server will act as an attacker by accepting any URL and
treat it as its own. But to ensure the client does not crash, the
Flask server will return the HTML data of that URL, just like
the way a Man in the Middle attacker forwards information be-
tween the two parties. In the background, it must intercept and
parse the HTTP requests, specifically GET and POST requests.
The GET requests are stored as an Immutable Dictionary in the
args attribute of the Request Object while the POST requests
are stored as an Immutable Dictionary in the form attribute of
the same object. Unfortunately, this server will crash if one
request is invalid since it will keep trying to complete that

Fig. 2. Flow chart of the iptables rerouting

request, holding up the future requests. So to start multiple
processes of this server, Flask must be implemented with
uWSGI. uWSGI is a protocol used to communicate with
web servers. More importantly, it is used for load balancing
and taking advantage of features HTTP cannot provide. With
uWSGI, the Flask server can be run with multiple processes,
and if one process is currently trying to completely an invalid
request, the other process will handle future requests.

Also, the web traffic must be rerouted to this Flask server by
using iptables. Within the vast majority of possible commands
of the iptables, the NAT, Network Address Translation, section
will be used to alter traffic flow. Performing NAT will alter ei-
ther the source or destination address of a network packet and
traffic. These are called SNAT and DNAT respectively. SNAT
is performed during post-routing, right before the packets leave
the client. DNAT is performed during pre-routing, right after
the packets arrive. The objective of the attacker if the receive
packets from the client and the server, so they must alter the
destination address of the packets. In this research, iptables
will be used to alter the destination ports of the HTTP requests
by using DNAT

In addition, the Flask server must interact with the client
application and do to so, both the server and the application
must use XML-RPC. XML-RPC is a Remote Procedure Call
method that uses XML passed through HTTP as a transport,
and this enables another program or application, the XML-
RPC client, to access methods from another program running
a XML-RPC server. As long as the XML-RPC server is on,
the XML-RPC can use the servers IP Address and port to
connect. The client sends the data to the server, which will
then pass that data through the procedure the client has called.
This is a simple yet versatile way for the client application to
communicate with the Flask server.

Purpose and Engineering Goals
The primary purpose of this project is to create a defense to

protect against online attackers by detecting insecure mobile
applications. The Middle Man Defender will intercept all
network traffic, but will not interfere with the transactions
or alter any requests. Such transactions include registration,
login and during a purchase. The data caught by the MMD are
recorded. In addition, if this program detects any insecurities
from the request sent from a client, it will communicate with
an app installed on the client device to alert the user.

Expected Outcomes
Secure applications will check if it is connecting to the



correct server by validating the servers certificate. If there
is an attacker interrupting the connection, these applications
will prohibit further transactions. Some applications will send
sensitive data over the network but through HTTPS. To capture
these requests, the program must also run on the HTTPS
port. Some applications will also send sensitive data over the
network through HTTP but will encrypt that data as well. The
program can catch it, but the analyzer cannot read it. Many
applications will send somewhat sensitive data through HTTP
such as location, android model, android system and network
carrier. These data are unique to the user, but will not make the
user vulnerable to attackers. There are some apps that will use
HTTP to send sensitive data such as username and password.
These apps are the most insecure. The program should be
able to catch all network traffic from any client, Android and
iPhone, connected to the hotspot. It should successfully print
out the GET and POST requests of any network transactions.
Other transactions such as HEAD or PUT should also be able
to go through the program but there will be no data from those
requests to print.

Manual Identification
To identify insecure apps manually, I need to perform a

Man in the Middle attack to sniff out the traffic sent by the
app, then decide whether the traffic is secure. First, I installed
the app onan Android device and connected that device to my
computer. Then, I used Man in the Middle proxy to see the
app’s traffic. Finally, I parsed the traffic to see if I could extract
any information.

Automative Identification
The Middle Man Defender (MMD) will be written in

python. Using its subprocess module, one program, the An-
droid emulator controller, will be able to call bash commands
to control the installed Android emulator and manipulate
android packages. Another program will open a Flask server
on the local machine. Using this Flask server, the program can
extract all the HTTP requests that passes through the local
machine. This Flask server will mimic the previously used
Man in the Middle proxy. The program will parse all of the
URLs from the Flask server. If these URLs give unencoded
information, the app will be marked as insecure.

II. CRAWLING

Crawling the Apps
The first step to this analysis is to download the apps

from some app stores, specifically the Baidu app store and
Google Play, with programs called crawlers. The Baidu app
store easily allows any client to download an APK file. The
Google Play store, however, uses various methods to prevent
anyone from crawling. Clients must have Google accounts.
These accounts cannot be automatically created as they require
CAPTCHAs. Secondly, Google Play search results only list the
first 500 apps. Finally, Google Play will disable an account if
that account has too much download activity. To solve the
first problem, I have personally created several Google Play
accounts. Harvesting a few hundred is ideal, but I plan to run

the crawler for some time. To avoid the second mechanism,
instead of entering random search words, I start with the first
few apps featured on the main page and continue adding apps
by looking at their related apps. Finally, I programmed the
crawlers to remain idle for five minutes after every download
to avoid the third obstacle.

Architecture of the Crawler
The crawler program I wrote was written in a simple yet

power language, Python. Firstly, a single program, the parser,
would download the app store page and extract the URLs of
the apps. Using SQL Alchemy, the program will store those
URLs into a data table in a database. Secondly, a multitude
of programs, the crawlers, will extract these URLs from the
database. They will download that webpage and extract all the
related apps on those pages and will insert these URLs into
the same table. If the URL already exists in the table, these
crawlers will not add it in. At the same time, the crawler will
locate the meta data of the app. Thirdly, they will download the
original URL it extracted. Fourthly, they will find the SHA1
value of the app and move it into the corresponding folder on
a server. Finally, the crawlers will add the meta data of the
app into a downloaded table in the database.

Crawling Baidu
The apps on the Baidu app store can be downloaded on

any device. This makes it particularly simple for programs to
crawl. This app store has a few pages of apps easily accessible
from the home page. The first part of the Baidu crawler was
to extract all of those pages for app URLs. There were around
ten pages per category, resulting in around one hundred twenty
pages of apps and two thousand app URLs.

With these two thousand app URLs, the second part of the
crawler was able to easily add related apps. Since the crawler
does not delete the original URL from the data table because
related apps may change, the crawler adds in another value for
all URLs in the table. This value is an integer value of seconds
passed since January 1st, 1970. The crawler will extract the
URL with the lowest time value. Then when it is done, it will
put it back in with an updated time value. This ensures the
crawler gets to all the apps.

Another value the crawler will add to the URLs is a priority
value, either one or zero. The crawler adds a one if the URL
has not been downloaded, and a zero if it has. This ensures
that the crawler will extract app URLs that have not been
downloaded first. After downloading the app, the crawler will
change the priority value of the URL it extracted to zero.

The code that extracts data from the webpages are unique
for each app store since the HTML code is unique for each app
store. If this code changes, the code of the crawler would need
to change. The crawler uses that code to extract the meta data
of the app. These pieces of data include app name, version
and total downloads.

If the app is unable to be downloaded, the crawler adds the
app into an error table. This table keeps a record of all errors.
Another value in this table is the amount of errors occurred
for that app. If that value exceeds three, the crawler will delete



the url from the data table. The crawler will not change the
priority value, but will change in time value. It will then insert
the app URL back into the data table.

Once downloaded, the crawler will identify the SHA1
value of the app. This value is a forty digit hexadecimal
number that is unique for all documents. The crawler uses
this value to determine the name of the android package file,
the corresponding folder and the primary key of the app in the
table. The name of the file will be the complete forty digits
and will be moved to the folder with the same first two digits.
A primary key in a database makes sure no two identical items
exist at the same time. The primary key of the data table is
the app url, while the primary key of the downloaded table is
the SHA1 value.

However, implementing only one crawler process to down-
load all the apps on the store takes a very long time. One
solution is to implement multiple crawler processes. To do
so, each crawler must be able to coordinate their downloads
so their actions do not disrupt the actions of another crawler
process.

The first step is the initial extraction of an app URL.
Since there are multiple processes, it is highly likely that two
processes may extract the same URL. To avoid this, when
one crawler extracts a URL, it immediately deletes that URL
from the data table. This prevents any other crawler from
extracting that same URL. If two crawlers extract the URL
simultaneously, one will throw an error that states the URL
has been deleted and the crawler will be terminated. So, there
must be an exception. In this exception, the crawler will just
move on to the next app.

This app URL is now removed from the database. One
problem is that another crawler may add in the same app as
a related app. This is a problem because now the related app
has a high priority although it is being downloaded already. To
avoid this, the crawler must add the app into the downloaded
table after deleting it from the data table. Other crawlers will
first examine both tables before determining if they should add
in a related app.

The new app in the downloaded table does not have the
meta data. So, in order to add the new app, the crawler will
make temporary placeholders. After getting the meta data, the
crawler will update the app in the download table. During the
download process, if an error occurs, the crawler will add that
app back into the data table.

Crawling Google Play
Crawling Google Play is more complex. Apps on this store

are only downloadable on Android phones. An API is needed
for the crawler to surpass this security. Also, a crawler must
use a Google account to download the apps. Finally, some
apps are paid and the crawler should avoid downloading those
apps but also avoid encountering it twice.

First, the crawler needs to find the app URLs. The main
page of the Play store does not have many more links for new
collections of apps. So, the crawlers ended up with less than
eighty apps to being with.

Next, the crawler needed to implement a Google Play API.
This API is able to search, download and login to the play
store. The crawler needs real Google accounts and Android
device IDs. Also, the Google account must be registered to
that Android device. Each crawler is only allowed on account
since Google blocks an account from downloading too much.
So after each download, the crawler will wait five minutes
before extracting the next URL.

The crawler will log into an account before proceeding to
the download phase. The crawler uses the log in function of
the API. This function associates the Google account with the
Android Device. Then, the crawler will extract a URL and
find the related apps and meta data as usual. The meta data
includes name, version, total downloads, size, rating, developer
and more. However, there are many different versions of the
same app on the Google Play store. Since there are many
versions of Android, keeping older versions allow users with
older android operating systems to download those apps. Since
the crawlers do not download the same app URL twice, the
crawlers avoid downloading the same version of the same app
twice.

Then the crawler will use the download function from the
API to download the app. The download function retrieves
the binary download links of the Google play app, allowing
the crawler to download the app. It will create a temporary
Android Package file. After identifying the SHA1 value, the
crawler will move the Android Package to the corresponding
folder. Then it will wait five minutes before proceeding

These crawlers implement the same functions as the Baidu
crawlers in order to coordinate their processes with their peers.
However, the amount of Google crawler processes will be less
than Baidu crawler processes. Each Google crawler needed an
account and an Android device. This limits the total Google
crawler processes.

Results
After a few days of downloading the apps, the Baidu

crawlers began to slow down. They downloaded around ten
thousand apps but the related app inflow was beginning
to slow down. Soon, many of the apps in the data table
had a priority of zero. These crawlers slowly inched toward
fifteen thousand downloaded apps and only discovered sixteen
thousand. These crawlers could implement a better system for
these downloaded apps. Instead of piling all the apps in one
data table, the crawlers could delete the downloaded apps from
the data base. At first, this was the system the crawlers used.
But then, the downloaded apps were added back to the data
base to extract updated related apps. However, this problem
could be solved without adding those apps back into the data
table. When the data table becomes empty, the crawlers could
start going through the downloaded table, using those app
URLs and begin finding related apps. Combining both new
and downloaded apps into one table is very complex and may
lead to problems such as downloading the same apps twice.
Also, by separating the new and downloaded apps, the priority
value in the data table can be omitted.



Over couple months time, the Baidu crawlers amounted a
total of 91,000 apps. The Google Play crawlers reached a total
of 23,000 during the same time period. Every week, the server
resets and all processes are stopped. Forty new processes are
started manually.

III. IDENTIFICATION

Dynamic Identification
Dynamic analysis, also known as real-time analysis, is when

the analyzer catches all the traffic an app passes through the
network by preforming a man in the middle attack. This is
when the attacker, the analyzer, intercepts the clients request to
the server. Ordinarily, the client will send a certificate request
to the server. The server will then send their certificate. The
client will verify this certificate. Then it will generate a random
symmetric key, encrypt this key with the servers public key
found in the certificate and send it to the server. Any data
sent between the client and the server will be encrypted and
decrypted with this symmetric key.

In a Man in the Middle Attack, the client sends a certificate
request to the server. But the attacker intercepts this certificate
and sends its own certificate. The client will be unable to verify
this certificate. Secure clients will refuse connection while
insecure ones will ignore. The attacker will send a certificate
request to the server and receive a certificate from it. The client
will send data encrypted with a symmetric key the attacker and
it both have. The attacker will decrypt it and then encrypt it
with a symmetric key the server and the attacker both have.
Now the attacker can read and modify the data the client and
server are sending.

Static Identification
Static analysis is when the analyzer reads through the Java

source code of the App to find any coding flaws. First, the
App is decompiled with Apktool. Then, using dex2jar, the
apps Dalvik byte code is converted into Java byte code. Finally,
Java Decompiler will convert the Java byte code to Java source
code.

This analysis has a couple of disadvantages. Firstly, App
developers may have obfuscated the source code completely,
rendering the Java source code unreadable. Secondly, App
developers may have encrypted the entire code except for a
small decryption key included. While the application and use
the key to decrypt the code, analyzers are unable to read the
code except for the key.

Architecture
A client will connect to a hotspot on the computer. Using

iptables, all traffic headed for port 80, the HTTP requests, will
be redirected to port 8080 and all traffic headed for port 443,
HTTPS requests, will be redirected to port 8443.

The Middle Man Defender (MMD) will initiate a Flask
server using Python. The server will be started with two
sockets: one on port 8080 with an HTTP protocol and the other
on port 8443 with a HTTPS protocol. The HTTPS protocol
requires a certificate and public key created by OpenSSL. The
certificate and public key will be sent to the client if they

Fig. 3. Flowchart of the MMD

request a certificate. Consequently, the client application will
fail to validate them. It will alert the user and refuse to connect.
Applications that do not request for a certificate will allow for
data transmission. The MMD will catch all the HTTP and
HTTPS requests of these apps. It will parse the GET and
POST requests and search for any keywords. The client app
needs to go through several transactions for the MMD to catch
sufficient data. Such transactions include registration, login
and entering personal data. Then the MMD must respond to
the client with the server data. For example, when the client
goes to the login screen, the MMD must respond with the
login screen data from the server. To do so, the MMD creates
a URL request object with the request data from the client. It
then accesses that URL request. The server will respond with
a URL response object that the MMD will return to the client.

The communication between the monitor application and
the MMD will depend on XML-RPC. The application will
first become the XML-RPC client and connect to the XML-
RPC server running on the MMD. The application will then
send its IP address and port number to the MMD. Then, it
will use that information to become the client and connect
to a XML-RPC server running on the monitor application. In
this architecture, the MMD can push data to the application
by calling a process on the apps XML-RPC server.

IV. RESULTS

Data Analysis Many popular shopping apps, such as JD,
send sensitive client data in plain text through the insecure
HTTP protocol. All of these applications are labeled insecure
because they do not verify certificates and allow the client to
be connected to the MMD. During registration, these apps tend
to send the clients phone number and verification code in plain
text. During login, these apps usually send the users username
in plain text, while a few apps also send the users password in
plain text. Most of the shopping apps require the user to enter
in an address prior to purchasing a good. When updating the
address information, the application may insecurely send the
clients name, phone number and exact address.

Other applications, such as Taobao, send the client cre-
dentials in an encrypted form. While this data cannot be
read by a human, malicious attackers may be able to reverse
engineer the applications encryption algorithm and decrypt the
data. In addition, some applications, such as cTrip, do not



leak sensitive information to the MMD. These applications
may leak other non-sensitive information, such as the global
coordinates of the user. However, both types of applications
do not verify certificates, so they are labeled as somewhat
insecure.

Finally, the most secure applications refuse to transmit data
when connected to the MMD. They often throw a network
error, explaining that the network is insecure or unstable. The
client is forced to switch networks and these applications
successfully secure client data.

Based on the results, many popular Chinese shopping
applications are insecure. A majority of these shopping ap-
plications leaked client information during registration, login
and the purchasing process. Some other Chinese apps, such
as lifestyle, travel and social media apps, were secure, as
they checked the servers certificate. In addition, most popular
English applications, such as Facebook and Instagram, along
with banking applications, such as ICBC and China Merchants
Bank, were very secure.

V. CONCLUSION

This research is significant because it designs a dynamic and
universal method of detecting network insecurities in mobile
applications. Instead of statically analyzing an applications
source code, this method analyzes the applications behavior
as it runs. The Middle Man Defender (MMD) is not only
more accurate, but also more efficient.

This method can be used to analyze the security of mobile
applications, just it has been used in this research project. By
determining if an application is secure or insecure, mobile
users and determine where to use the application, on an open
or private network.

In addition, this method can serve as a security measure
against MiTM attacks. Although it mimics an attacker, it
is a software so it will not use sensitive data it captured
maliciously, unless if a user tinkers with the code.

Next Steps
There will be two major steps in the next phase of this

project.
One of the next steps of this project includes securing the

clients connection to the server, such that the client can safely
use the MMD to browse the internet without having to switch
networks. The MMD will use certain protocol and encryption
to communicate with the server.

In addition, the MMD currently works on its own hotspot.
In the next step, any traffic sent over any wifi network will
be caught and analyzed with the MMD. To do so, this project
will include additional functions similar to programs such as
wireshark or tshark.


	Introduction
	Crawling
	Identification
	Results
	Conclusion

